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Abstract

Two fourth order accurate Osher schemes axe pre-

sented which maintain higher order accuracy on non-

uniform grids. They use either a conservative finite dif-
ference or finite volume discretization. Both methods

axe successfully used for direct numerical simnlations of

flat plate boundary layer instability at different Mach

numbers. Results of growth rates of Tollmien- Scldicht-

ing waves compare well with direct simulations of in-

compressible flow and for compressible flow with results

obtained by solving the parabolic stability equations.

1. Introduction

The study of boundary layer stability and transition to

turbulence is one of the classical topics in fluid mechan-

ics. Linear and weakly non-linear theory, together with

experiments, have been successful in describing several

of the important instability mechanisms in compress-
ible boundary layers, e.g. Tollmien-Schlichting (TS)

waves, or first modes, and higher modes, which come
into play at supersonic Mach numbers, Mack is, and

theory was also successful in describing secondary in-

stability, Herbert 1°.

The complicated phenomena in the non-linear stages,

leading to transition and turbulence, however, require

further understanding. Direct numerical simulations

can provide some of this information, but their appli-

cation to compressible boundary layers has been hin-

dered by many obstacles. To mention just a few, high

order accuracy is required on non-uniform grids and a

severe time step limitation is encountered due to the

small grid spacing in the boundary layer when using an

explicit time integration method; whereas with implicit

time integration methods it is difficult to maintain time

accuracy.
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Spectral methods have been very successful in simu-

lating incompressible flows in simple geometries, such
as channel flow, e.g. Laurien and Kleiser 11, but axe

not easily extended to more complicated geometries.

The recently popular compact finite difference schemes,

Lele is, do not have the geometric limitations of spectral
methods and have been successfully applied to mixing

layers and shock turbulence interaction, Lee et all4.

Unfortunately, compact finite difference schemes and

also spectral methods, cannot capttue shocks and ff

they appear they have to be fully resolved, which can

require prohibitively small grid spacings, Lee et al.14.

There have been several attempts to use finite differ-
ence schemes for direct simnlation of transition in com-

pressible boundary layers. The most frequently used
method is the fourth order accurate version of Mac Cot-

mack's scheme, developed by Gottlieb and Turkel 7, e.g.
Maestrello et al.10 and Bestek et al.s. This method can

only achieve higher order accuracy on grids generated

as the product of two or more one-dimensional analytic

transformations, limiting its applicability to relatively

simple, smooth flows.

Most frequently explicit time integration methods have
been used, but for many transitional flows the Courant-

Friedrichs-Lewy (CFL) time step limitation is not nec-

essary to maintain time accuracy. Recently Rai and
Moin 21 developed a numerical scheme which solves the

compressible Navier-Stokes equations using a time ac-

curate upwind biased implicit method and weze able

to simulate bypass tzansition. This method alleviates

the time step limitation of explicit methods, but has
as main drawback that it uses the non-conservative

form of the Navier-Stokes equations and only allows

grid stretching in one direction. The grid stretching,

however, does not have to be analytically defined be-

cause the higher order finite difference appro:dmations

axe generated numerically in physical space.

In this paper two alternative methods win be dis-

cussed. The first method is a higher order accurate

extension of the MUSCL scheme, originally developed
by Van Leer _7 as a second order accurate extension of
Godunov schemes. The scheme is related to the mnlti-

dimensional essentially non-oscillatory (ENO) schemes



developed by Casper and Atkins 4 and Harten et al2.
The second method is a higher order accurate upwind

biased version of the Osher scheme, which maintains

its high order accuracy on non-uniform grids. Higher
order accurate Osher schemes were also discussed by

Rai 2°, but his method is only higher order accurate on

a uniform grid.

The discussion in this paper will be restricted to smooth

flows, but both schemes have been extensively tested
for flows with shocks and other discontinuities in one-

dimensional flows. A detailed discussion of the benefits

and application of these schemes to non-smooth flows

can be found in Van Der Vegt 2s. The purpose of this

paper is to investigate ff these methods are accurate

and efficient enough to be used as tools for direct sim-
ulation of boundary layer instability and transition to

turbnlence.

The finite volume scheme has as main benefits that it

is a truly multi-dimensional scheme, whereas the finite
difference scheme uses dimensional splitting. The finite

volume scheme automatically satisfies conservation and

is most closely related to the integral formulation of

the compressible Enler and Navier-Stokes equations. It

also maintains higher order accuracy at sonic points,
which is not true for the finite difference formulation.

The finite volume method, however, is slightly more

costly than the finite difference scheme and requires

significantly more effort to implement.

The use of an upwind scheme is beneficial for direct

simulations of compressible flow, because it automat-

ically controls allasing errors. There are two types

of upwind schemes, those based on flux vector split-

ting, e.g. Van Leer _s and Steger-Warming _4, and those
based on a Godunov approach which use the solution

of a Riemann problem. Godunov schemes most closely

mimic the physics of wave propagation in compressible

flow and have excellent shock capturing properties. In

this class of schemes the Roe and Osher approximate

Riemann solvers are the most popular, see Roe 22 and
Osher and Solomon is. The Osher scheme has been cho-

sen because it has a very low numerical dissipation in

boundary layers, which is crucial for direct simulations,

and it has a continuously differentiable flux, which is

important for implicit schemes. In addition it satisfies

the entropy condition and has good shock capturing

properties.

In the next two sections of this paper first the basic

equations will be discussed and the higher order accu-
rate numerical schemes will be presented. The paper
will conclude with a discussion of the results of compu-

tatious of boundary layer instability at various Mach
numbers.

2. Navier-Stokes Equations

The Navier-Stokes equations can be considered either

in integral formulation, leading to the finite volume dis-

cretization, or in differential form, which is the basis for
the finite difference discretization. The finite volume

method automatically satisfies the conservation prop-

erties of the equations but care has to be taken that the
finite difference method is in the so-called conservation

form. It is otherwise not possible to obtain a weak so-

lution with the proper jump relations at discontinuities

in the limiting case of vanishing viscosity, as demon-

strated by Lax and Wendrofl a2. A detailed discussion
of finite volume and finite difference methods and their
differences can be found in Vinokur 2°.

The integral formulation of the compressible Navier-

Stokes equations is defined as:

/a(t_) UdV- /a(t_) UdV + /ti_ _oa(t) y:(U)'ndSdt = O

(2.1)

lqere f/(t) is the flow domain with boundary 0f_(t) at
time t and n the unit outward normal vector at Of/.

The vector U represents the conserved variables:

(p, pu, pv, pw, e) T, with p density, u = (u,v,w) T the
Cartesian velocity components, and e total energy. The

matrix .7, which represents the fluxes through the sur-

face 0fl(t), consists of two parts, F the inviscid flux,
and V the viscous flux, with Y=F-V. The inviscid flux

contribution F has as components:

F1 = puv ; F2 =

puw

(e +

PV2 +P/

F 8 -_

p'w

puw

pvw
pw 2 +p

(2.2)

where the dimensionless pressure p is determined from

the equation of state: p = pc_T/(TM_), with c_ the

specific heat at constant volume, 7 the ratio of specific
heat at constant pressure mad constant volume, M the

Mach number and T temperature. The temperature T

is given by the relation: T : 7(7 - 1)M2( e - _pu.1



Theviscous contribution V has as components:

0)l0V, = / _-_y V2 = /'r_ V3 = r v, | (2.3)

with the stress tensor r and the variables/3=, /_ and

j3, defined as:

0= 0v 0w )= + +  (ov + /Re

r,v = g + _ /Re

r_, = + /Re

ov o ) /Re

"ryz = # + /Re

,.. = C2v+  )Wz + + /Re

(2.4)

[32 =u'rzz + v'rz_ + w'rzz +

t3y =ur_,_t + rryy + w'r_,, +

0T

(7 - 1) M2Pr cgz
02"

(2.s)
(7 - 1) M2Pr 0y

OT

(7- 1) M2Pr Oz

Here Re represents the Reynolds number, Pr Prandtl

number, t_ the coefficient of thermal conductivity and

and A the first and second viscosity coefficient. All

computations were done using the relation A = 2-$_,
with # given by Sutherland's law. The non-dimensional

variables are defined with respect to the free.stream ve-

locity, density, temperature, viscosity, thermal conduc-

tivity and specific heat.

If we assume that all variables are continuously differ-

entiable in time it is possible to rewrite equation (2.1)
into:

0 /a UdV+_o :T(U).ndS=O (2.6)(t) n(t)

A special constraint can be derived from this expres-

sion, namely the geometric conservation law. Inserting
a uniform flow field in equation (2.6) we obtain:

ndS = 0 (2.7)
n(t)

which states that the cell face 9_(t) must be dosed.
When dividing the total flow field m a set of non-

overlapping cells this constraint puts limitations on the

way how to compute the cell faces and volumes. They

all have to add up to the total volume and each cell
will have to be closed otherwise a uniform flow field

will be disturbed due to contributions from the metrics.

This is a non-trivial problem when deriving higher or-
der schemes and will be discussed in the next sections.

The differential form of the compressible Navier-Stokes

equations is directly obtained from the integral formu-

lation, equation (2.6), using Gauss' theorem and con-

sidering an arbitrary volume _2:

aU
0-Y + V. J=(U) = 0 (2.8)

This is the conservative formulation of the compress-

ible Navier-Stokes equations and it is important that
the discretization also can be written in conservation

form. The geometric conservation law must be satis-

fied and this requires great care in dealing with the
metrical coefficients in a finite difference discretization,

especially in three dimensions.

3. Higher Order Accurate Finite Volume

Scheme

Second order accurate finite volume schemes have been

around for a long time. When extending the accuracy

beyond second order several problems are encountered.

It is no longer valid to equate cell averaged values with
values at the cell center and a more elaborate algo-

rithm to reconstruct point values from cell averaged

values is required. In addition one has to compute the

integrals of the fluxes over the cell surfaces more ac-

curately. The standard procedure of multiplying the
flux with the cell surface is only second order accurate.

The geometry in a higher order accurate finite volume
method also has to be represented more accurately, es-

peciany at the boundary. The relations for cell area

and volume as given by Vinokur _9 are no longer suf-

ficient. They are exact for hexahedrons with straight

line edges, but not for cells with cmrved edges.

Until now very few attempts have been made to de-

velop higher order accurate finite volume methods. For

structured grids Hurten et al.9 and Casper and Atkins 4

developed the multi-dimensional ENO schemes and

Abgrall t and Harten and Chakravarthy s studied these

schemes for unstructered grids. Despite the fact that
the unstructured approach has more flexibility in treat-

ing complicated geometries and allows local grid re-
finement it was decided to use the structured grid ap-

proach developed by Casper and Atkins 4. Both CPU



timeandmemory usage in the unstructered schemes,

is so large that it is not feasible to use these meth-

ocls for direct or large eddy simulations of compressible

flow. The structured grid approach, however, requires

a smooth C 8 grid. It is possible to deal with locally
non-smooth boundaries and intersections in the finite

volume approach by subdividing the grid into smooth

subsections using a multi-block approach. The smooth-

ness requirements of the grid will limit the application

of this method to fairly simple geometries, but due to

their high cost large eddy and direct simulations will

be limited to simple flows for quite a while. The finite
volume method is, however, considerably more flexible

than spectral methods which requi_e a C °o grid.

The use of a structured grid makes it possible to trans-

form the physical domain to a simpler computational
domain. Let _, ,7, and ( be the coordinates in the com-

putational domain then they axe related to the physical

coordinates z, y, z by the relations:

u, z)
--_(z,U, z) (3.1)

y,z)

The finite volume discretization on a structured grid

is obtained by dividing the domain 12 into a regular

partition i2i,Lk. Each element 12i,j,k is a hexahedron

with coordinates zi, Yi and zk for the top right corner.
The subdomains 121j,} axe non-overlapping and thei_

sum is equal to the domain fL

The cell average Uij,k in a cell with index (i, j, k) is
defined as:

-- 1 _ UdV (3.2)

with VoI(nij,k) the volume of cell G_j,k. The equation
for the cell average is obtained by limiting the integra-

tion domain l_ to fli,j,h in equation (2.6), and is equal
to:

0-- t
_Uid,} ( ) + hLj,k(U ) = 0 (3.3)

with the flux integral hid,} at the surface aflij,} of the

cell f_ij,_ defined as:

1 /o Jr(U)-ndShid,k(U) = Vo/(f/_j,k) a,,_,k
(3.4)

/ (U)dS=- Vd(f_,j,k) t_,,_,,,

with F the flux normal to the cell surface:

= klFt + k2F2 + ksFs (3.5)

4

and n = (kx, k2, ks) T. This relation gives the method of

lines formulation for the cell averaged equation Uid,k (t).

The numericalfluxina higherorderfinitevolume scheme

now is constructed such that it approximates the exact

flux at time t - (n + 1)At up to O(h'):

• = o(h')

with _a(At) the numerical solution operator. The

higher order accurate flare volume scheme therefore

gives an r-th order accurate appro_dmation to the cell

averages, not the point values as in a finite difference
scheme.

The two important ingredients of a higher order accu-
rate finite volume method are the reconstruction of the

point values U(x) from the cell averaged values U_,i,_

and the computation of the flux F at the cell face. The

point values axe necessary to compute the fluxes h_,i,_

at the cell faces which depend on U(x) and not on
U. This is done with the reconstruction method dis-

cussed in section 3.1. The fluxes at the cell faces axe

computed by considering a Riemann problem at each
cell face. This method was introduced by Godunov e

for first order accurate schemes and extended by Van
Leer _ to second order accuracy. Instead of using the

exact solution of the Riemann problem the approximate

Riemann solver developed by Osher and Solomon TM is

used, because it is less expensive than the exact solu-

tion, but has excellent shock capturing properties and
minimal dissipation in boundary layers.

3.1 Reconstruction of Poin_ Values from Cell Averages

In one dimension the most successful reconstruction

technique is based on the primitive function method,

see e.g. Haxten et al._. This method was extended by

Haxten et al. _ and Casper and Atkins 4 to multiple di-

mensions using the one-dimensional primitive function

reconstruction technique first to compute line averages
f_om cell averages, after which point values axe com-

puted with a second one-dimensional reconstruction. It

is, however, possible to define a primitive function di-

rectly for the multi-dimensional problem without hav-

ing to use one-dimensional primitive functions.

Define the primitive function H as:

U(t_, r/, ¢) = U(_', ¢, ¢)[Y(_', ¢, ¢)ld_'dr/dC
0 0 O

(s.r)
then the flow field U satisfies the relation

1 Os

U(_,_,C) - IJ(¢,,_,¢)l O_O,_O;U(_,n,¢)¢ (3.8)



with _, 7/and _ the coordinates in computational space
and J the Jacobian of the coordinate transformation.

The primitive function/2 can be ielated to the cell av-

erage U in physical space using the following relation:

l.t(_i, 77j, _k ) = fCi" ilJ _i_ U[J[d_'d_'d_ '

k j i k' j' i'

k ko2 Jo_ 1okr 1 jS_liS_l

kl=k.o j,=jo ir=i o i'.$', Lt

k j i

k'=ko f =jo i'=io

(3.9)
This relation is the basis for the higher order finite vol-
ume scheme. It defines the primitive function /2 di-

rectly at the corners of each hexahedron in computa-

tional space (_i, _j, Q,) and is conservative. The point

values U(x) axe then obtained using equation (3.8).
When the flow field is smooth the following procedure

can be used to compute the pointwise data: For a sur-

face in the plane _ = _*, first approximate the left and

right states by differentiating the primitive function _/

with upwind biased differences in both _-directions with
fourth order accuracy for all indices j and k. Then the

and (-derivates are computed at the Gauss quadrature

points and divided by the local 3acobian to obtain the

point values. This process is repeated for the planes

with 71 = 7" and _ = (* and works well for smooth
flows. For flows with discontinuities the ENO recon-

struction, which tries to use only data from the smooth

part of the flow field has to be used. This will be dis-

cussed in a future paper.

Although this process is rather simple care has to be
taken to prevent loss of accuracy due to truncation er-

rors, because the primitive function /2 frequently be-

comes very large or small. The way to prevent this is to
construct the primitive function using only those cells

around the cell with index (i, j, k) which are needed to

compute the derivatives in equation (3.8) and dynami-

cally adapt the indices i0, j0 and k0. Accuracy is further

improved by combining the process of summation and

differentiation, e.g. first compute the sum with/-index,

then differentiate this result and compute the summa-

tion with j-index, and so on.

In order to preserve uniform flow it is necessary to
compute the Jacobian of the coordinate transformation

at the Gauss quadrature points the same way as done

for the flow field U. This can be accomplished most

easily by multiplying equation (3.8) with the Jacobian

and inserting a uniform flow field in equations (3.8-9)

will give the Jacobian at the Gauss quadrature points

with the same reconstruction process as for U. This

procedure is important because otherwise the recon-

struction process will generate small errors which can

be very annoying on stretched grids.

3.2 Higher Order Accurate FZuz Inteqrals

The discretization of the integral formulation of the

compressible Navier-Stokes equations (3.3) is completed

with the approximation of the flux integrals given by

equation (3.4). Casper and Atkins 4 gave a detailed

analysis of the accuracy required in the reconstruction

problem and the computation of the flux integrals to
obtain an accurate solution with an error of order h'.

In this paper we limit the discussion to fourth order ac-

curacy. The use of a Gauss quadrature method is the

most efficient way to compute the flux integrals with

fourth order accuracy. First the integral over the cell

boundary is split into the sum of integrals over the six
cell faces:

6

Vol(a,j,k) :

here the index 1 refers to one of the six faces of the

hexahedron. Then the flux integrals at each cell face

can be further evaluated using the Gauss quadrature
rule at each cell face and the Osher approximate Rie-

mann solver 1Lls is used to compute the flux at each

quadrature point:

f f(U)dS=

a _ r_ i,.i , ¢,

m=l I' 9,_,_

(3.11)

with Of_,j,1, the cell face with index I in computational
space. The indices g,_,i refer to the quadrature points
with index m in the cell face where the fluxes of the

left and right states FL,R and the Oshex path integral
are computed. The quadrature points have coordinates

(½ :[: _1V_-_1,_ 4- _IV_ ), assuming that the hexahedrons

sides have unit length. This relation is used by Casper



and Atkins 4 and requires four calculations of the ap-

proximate Riemann flux for each cell face which sig-

nificantly increases the computing time. Haxten and

Chakravaxthy s suggested that only one computation of

the (approximate) Riemann flux is required to main-
rain accuracy in smooth fiows. Due to the fact that the

Riemann flux, and also the approximate Riemann flux

according to Osher, is Lipschitz continuous and [UL -

UR[ : O(h') in smooth flows it is easy to show that the
third component in the integral, equation(3.11), can be

approximated as:

(3.12)
Here the index cl refers to center of the eel] face with

index I. This relation significantly reduces the com-

puting time, while maintaining the total accuracy at

the slight expense of computing UL,R at the cell face
center. In regions with discontinuities it is, however,

advisable to use the (approximate) Pdemann solution

at all the Gauss quadrature points.

4. Higher Order Accurate Finite Dii_erence
S cheme

The most difficult problem in deriving a higher or-

de_ accurate finite difference scheme is to find a way

to maintain that accuzacy on a non-uniform grid. In

upwind finite difference schemes, either based on flux

vector splitting or using approximate Riemann solvers,

the flux is a function of more than one grid point. When

deriving the expression for the higher order differences

care has to be taken to account for the changing met-

rics, but this is fzequently neglected. For instance the

higher order Osher scheme derived by Rai 2° is only

higher order accurate on a uniform grid. In addition
to the accuracy requirement care has to be taken that
the scheme is in conservation form and maintains uni-

form flow, which is a non-trivial requirement for a finite
difference scheme. The conservation property is impor-

tant on physical grounds, the equations express con-
servation of mass, momentum and energy, but is also

important when dealing with discontinuities. In this

paper, however, only smooth flow fields will be consid-
ered.

Before deriving the higher order Osher scheme it is
necessary to study the first order Osher scheme in more

detail . The conservative approximation to O_E using
Osher's scheme is defined as:

0_ = X-/(z_+i - z,_i) (4.1)

where the conservative flux is defined as:

+

(4.2)
with equivalent relations for a, 71¢and 0(G. The symbol

au represents partial ditferentiation with respect to U
and for ease of notation the j and k indices axe omitted.

In this relation _i+-_ refers to the metrical coefficients

which axe computed at the point with index i + -_. The
integrals in equation (4.2) axe computed along a path

in phase space, Pi, and using the fact that the Riemann

invaxiants axe constant along this path Osher was able

to derive exact analytic expressions for these integrals,

see 2°,22. It is important to note that although the path

integral Pi is from i to i + 1 only metrical coefficients at

one point must be used for consistency= As can be seen

directly from equation (4.2), the flux El+ i depends on
1 and i+l. Usingthe positions with indices i, i +

a Taylor series expansion with respect to both i and
i + 1 Rai 2° was able to derive higher order conserva-

tive expressions for 061_,. The dependency on i + ½,

however, was negle.cted, which reduces the order of ac-

curacy of the scheme on a non-uniform grid, even on

mildly stretched grids The analytical derivations nec-

essaxy to obtain Rai's higher order Osher scheme axe al-

ready tedious and taking care of the changing metrical

coefficients, which wouid require Taylor series expan-

sions up to at least fourth order in three independent

variables, becomes unwieldy.

An alternative is to compute the higher order accurate

flux approximations numerically. This is done using
the flux-ENO scheme discussed in Van Der Vegt 2s, but

the stencil switching, which is part of ENO schemes, is

eliminated in this paper. As starting point a different
formulation of the first order Osher scheme is used:

=..f,_, E+ )dV+ (

It is easy to show that both formulations axe equivalent,

see Osher and Solomon _s. The higher order scheme is

derived using a Newton interpolation to the fiuxes. The

Newton interpolation, however, cannot be directly ap-

plied to the integrals in equation (4.3) bec_nse of the
path integrals. In order to use the Newton interpola-

tion we use some simple relations, which were derived

by Shu and Osher_S: The function f(z) can always ex-

pressed as:

1 ;_+_ h(z')dz'
f(_) : _ ._ ,_-



and using its primitive function: F(x) : 1 f= h(_')_'
the following relation is obtained:

/kz Ax
f(z_) = F(z_ + --_-) - F(z, -T) (4.4)

These relations can be used to link the primitive func-
tion F to the flux integrals di_i:

df+ ----f+ - f+-1

=F +[=,+__,x____]- F+[=___,=___]

=2F +[=_+],x__],x__]]

(4.5)

with:

=F-[z_+_,xi+½]- F-[xi+_,z___I

=2F-[zi+__ x. 1,z. al

(4.6)

df_- = £, 0uE-(_i+_)dU

df + =£ Oul_+ (_- _) dU
i--1

and F[zi+_,..., mi] the k-th divided difference defined

as:

1
F[m,+_,---,z,]= _ (F[_i+k,...,_,+_]-F[_,+___,...,=_])

In the derivation of the higher order accurate scheme

the specific functional form of the functions f+ and F ±
is not needed, only their divided differences.

The primitive function F is now approximated with a

fifth order Newton polynomial using the divided differ-

ences defined in eq. (4.5-6). The higher order divided
differences can be easily obtained by further extending

the divided difference tables given by equations (4.5-

6). The nodes in the Newton interpolation are chosen
such that an upwind biased scheme is obtained. This

relation is then differentiated at: x_+__:

a_F+(zi+}) =F+[xi+_, z,- i] +

+ 2F + [z,+_, • -.,

- 2F + [zi+_, • • ",

O_F-(:_+_) =F-[z_+_,z_+_]-

+2F-[z_+_,.-.,

+ 2F- [zi+_, • • -,

F+[zi+_,---,mi__]

zi-_]

z_-_]
(4.7)

F-Cmi+_,---,zi+½]

z___]

(4.s)

The higher order approximation to Be l_,i is obtained us-

ing equation (4.4) and adding the positive and negative

contributions in equations (4.7-8):

c9_1_,i = 0¢F(zi+_) - 0_F(z__½) (4.9)

This relation is conservative, fourth order accurate, mad

maintains its higher order accuracy on a non-uniform

grid because the change in metrical coefficients is prop-
erly taken care off by means of the Newton interpola-

tion. It satisfies the geometrical conservation law be-

cause for each of the integrals df_, i _ {i - 2, i + 2},

appearing in the divided differences, the metrics are

chosen at indices i+ _, i _ {i-2, i+2}. The geometric
conservation law then is automatically satisfied because

for uniform flow each of the integrals gives a zero con-

tribution independent of the metrical coefficients. The

additional cost of computing the divided differences is

negligible compared to the computation of the integrals
df ± and the scheme is as efficient as a scheme with an-

alytically derived coefficients. One additional remark

must be made about the first divided difference in equa-

tions (4.%8). Their value is unknown, but not needed,

because in equation (4.9) only their difference is used,

which is exactly the first order contribution and given

by equations (4.5-6).

5. Implementation of Higher Order Schemes

In order to obtain the high accuracy necessary for direct

siniulations a large number of grid points is required.
In order to efficiently run the program with such large

grids a general three-dimensional multi-block code has

been written. This gives more flexibility in managing

the large memory requirements and it is easier to gen-

erate grids for more complicated geometries. The in-
viscid contribution in the compressible Navier-Stokes

equations is discretized using the procedure described

in the previous sections. The viscous terms are im-

plemented using a fourth order accurate, conservative
central differences for the finite difference scheme, but

the viscous contribution is only second order accurate

for the finite volume scheme. The development of a
fourth order accurate viscous discretisation for the fi-

nite volume scheme is currently in progress. Second

order accurate implicit time integration is used and in

order to maintain time accuracy a Newton procedure is

chosen, equivalent to the one used by Rai and Moin _l
and Ral _°. In this method the equations are discretized

with all the fluxes computed at the new time level n+l.

The resulting non-linear equations axe linearized us-
ing a Newton procedure and the large system of lin-

ear equations is solved iteratively. In zo,_i the diagonal



form of approximate factorization according to Pnlliam

and Chaussee 19 was chosen, which only gives a crude

approximation to the solution of the linear system. In

this paper a more accurate iterative scheme based on
the zebra line Gauss-Seidel method is used and for each

step in the Newton procedure the system is solved up to

machine accuracy. This method is used plane by plane

and fits well into the Newton procedure.

The Newton procedure makes it possible to have an

implicit spatial discretization which is of lower accuracy
than the explicit part, but because each time step the

Newton procedure is iterated time accuracy is main-

tained and the higher order spatial accuracy is pre-
served. Usually four Newton iterations are sufficient,

but for convergence of the Newton scheme it is nec-
essary to solve the linear system of the implicit time

integration with high accuracy.

The Newton procedure requires the computation of
the Jacobian of the flux vector, which is quite cumber-

some to derive, especially for the viscous terms. Cur-

rently, both the exact Jacobian of the Osher fluxes and

the approximation using the Jacobian of the Steger-

Warming 24 flux vector splitting are used in the im-

plicit time integration. The exact Jacobian of the Osher

fluxes improves the convergence rate compared with the

approximate Jacobian. It is, however, approximately

three times more expensive to compute the exact Ja-

cobian and for most cases the computing time for both

schemes is about equal. For steady flows, where the Ja-
cobian has to be updated only after a certain number

of time steps the exact Jacobian is more efficient.

The boundary conditions for the Osher scheme are

implemented using the procedure proposed by Osher

and Chakravarty 17. In this method a Riemann initial-

boundary value problem is solved instead of an initial

value problem, which is used in the interior of the do-
main. This method is very robust and elegant, but a

significant effort is required to derive all relations to

compute the boundary fluxes and Jacobians.

6. Results and Discussion

In this section results will be presented of two simu-

lations of ribbon induced boundary layer instability to

demonstrate the ability of the two numerical schemes

discussed in this paper to accurately predict boundary

layer instability and their possible use for simulations of
turbulent and transitional boundary layers. Although
the results in this section are all two dimensional the
full three-dimensional discretization was used.

As a first step it is crucial to have extremely accurate
solutions of the mean flow. In many previous stud-

ies an analytically defined mean flow was used, but

this becomes difficult for flows in more general geome-

tries. The use of an analytically defined mean flow also

has as disadvantage that it does not exactly satisfy the

diseretized equations and will generate numerical tran-
sients.

In Figures I and 2 the mean flow profiles obtained
with the finite difference scheme discussed in section

4 are plotted at 10 equally spaced stations with Reffi,

the Reynolds number based on the distance from the

nose of the plate, ranging from 50.000 to 320.000 ver-

sus the similarity parameter 71 -- _vr'R'e, with Re the
Reynolds number based on plate length, z the stream-

wise distance from the nose of the plate and y the nor-
real distance. The freestream Mach number is .08. The

dimensionless normal velocity in Figure 2 is defined as:

= v Rv/R-_ffi.At the inlet a boundary layer solution was

specified and the grid was chosen to approximately fol-

low the streamlines and generated with the GridGen2d

package. The grid is non-orthogonal in the interior and
the normal grid spacing increases downstream. In the

same plot also the compressible Blasins solution is plot-

ted and it is clear that all lines completely collapse for

the mean flow streamwise component, Figure 1. The

same is true for the normal velocity, Figure 2, except for

the asymptotic value outside the boundary layer, which

is slightly higher than the Blasius solution. This slight

difference is correct because in the boundary layer solu-

tion the small displacement of the boundary layer is not
accounted for. The comparison between the theoreti-

cal and numerical solutions is remarkable considering

the high Reynolds number of the base flow. Especially

the accurate solution of normal velocity component is
noteworthy, because its value is much smaller than the

streamwise component and more difficult to compute.

Most tests of numerical schemes on a fiat plate bound-

ary layer use a Reynolds number which is considerably

lower and only show the streamwise velocity compo-

nent. Accurate boundary layer profiles were already

obtained with 35 points in the normal direction, but

the total grid consisted of 336 x 80 points to provide
sufficient accuracy for the direct simulations, discussed

in the next part. This demonstrates that the Osher

scheme is considerably more accurate in boundary lay-

ers than schemes based on flux vector splitting, Van

Der Vegt 2e.

The mean flow profiles obtained with the finite vol-

ume scheme discussed in section 3 are similar, but the
finite volume scheme turns out to be more sensitive to

the smoothness of the grid on highly stretched meshes.
Care has to be taken that the grid for the finite vol-
ume scheme is at least three times differentiable. The

sensitivity to the grid smoothness of the finite volume



scheme is caused by the fact that in the reconstruction

process the cell averaged flow field Ui,j,_ in equation

(3.9) is multiplied with the cell volume. The cell vol-

ume changes much more rapidly than the grid spac-

ing. The finite difference scheme is less sensitive to

the grid, because it uses dimensional splitting and de-

pends therefore only on the smoothness of the grid in
each coordinate direction. The sensitivity to the grid

smoothness of the finite volume scheme certainly needs

further attention before this scheme can be used for

more general applications.
Another problem when using a high order accurate

scheme to obtain steady solutions for high Reynolds

number flows is the slow convergence to steady state.
Due to the minimal amount of numerical dissipation it

takes a significant amount of computing time to elim-

inate all transients. Convergence to steady state was

improved using an implicit scheme and CFL numbers
between 1000 and 5000 were used to obtain steady re-

sults with the fourth order accurate schemes. In or-

der to further speed up convergence the computations
were started with a first order accurate scheme till the

residue was significantly reduced, followed by the fourth

order scheme till machine accuracy was obtained.

The first simulation of boundary layer instability is a

comparison with the dkect simulations of incompress-

ible flow about a flat plate done by Fasel et al.s. All

parameters were chosen as close as possible to the one

used in their computations. The free stream Mach
number was .08 and the Reynolds number based on

flat plate length Re was 100.000/m. The plate started
at z = .5 and ended at z = 3.2 and was extended

with a buffer region with slowly increased grid spacing
to x = 8. for the finite difference calculations and to

x = 5. for the finite volume calculations. The plate has

300 grid points in streamwise dkection and the buffer

region consisted of 36 points. The purpose of the buffer

region was to damp out transients and thereby min-

imizing reflections. Accurate non-reflecting boundary

conditions for the compressible Navier-Stokes equations

are not yet available.

First a steady boundary layer solution was computed

and the maximum pointwise value of the residual was
less than 10 -s. The flow was then disturbed in a small

region by periodic suction and blowing. The suction

strip started at zl = .908 and ended at z_ = 1.13. The

amplitude is given by the relation:

I, = Asin(i)(1 - cos(i)) sin( ,)

with:

The amplitude A for the computations is .0001. The

parameter 13 is equal to 10, which results in a frequency

parameter F = 100. Here the frequency parameter is

defined as: F = _3 × lOS�Re.

The blowing and suction starts in the region were the
boundary layer is linearly stable. This has as ben-

efit that transients, which occur due to the suction

and blowing, will damp out and a cleaner Tollmien-

Scldichting wave is obtained. The time trace of all the

flow variables along a line which corresponds to the po-

sition of maximum amplification was written to a file

and Fourier analyzed. The Fourier analyzed signal was
then used to compute the growth rate of the TS wave.

Figure 3 shows the comparison of the growth rate -a_
of the streamwise disturbances with the results of Fasel

et al.s. A negative value of the growth rate means that

the disturbance is growing. The large initial distur-
bances are caused by the suction and blowing, but af-
ter z = 1.4 the result from the finite difference scheme

compares well with that from Fasel et al.s, which also

agree with the theoretical non-parallel results of Gast-

net. The finite volume results are slightly less accurate
than the finite difference results. This is partly due

to the fact that the viscous contribution in the finite

volume scheme is only second order accurate. The Sec-

ond simulation, a boundary layer at M = 0.5, which

is at a considerably higher Reynolds number gives vir-

tually identical results for both methods. The growth
rates of the disturbances of the normal velocity com-

ponent, Figure 4, also compare well with the results
from Fasel et al.s , but the curves are shifted slightly

upstream. This component becomes earlier unstable
than in the simulation of Fasel et ai.s. The growth rate

of the normal velocity disturbances, however, strongly

depends on the vertical position and further research is
required to obtain more accurate results for this compo-

nent. Contrary to the streamwise component there are

no theoretical results for the growth rate of the normal

velocity disturbances.

The same procedure as used for the M = .08 boundary

layer was used for a simulation of a flat plate boundary

layer at Mach number Air = .5. The parameters were
chosen equal to the calculations done by Bertolotti _

using the linear Parabolic Stability Equations (PSE).

This method takes the non-parallel effects of the bound-

ary layer into account contrary to linear stability the-

ory. The Reynolds number based on plate length was

500.000/m. The simulations with the finite difference
scheme were done on two grids. The coarse grid has

336 × 80 grid points and the plate started at z - .5 and
ended at z -- 3.2. Suction and blowing was started at

x = .725 and ended at z = .86. The second grid con-



slated of 436 x 80 points and the plate started at z : .5
and ended at z = 2.3. Suction and blowing started at

z : .5225 and ended at z = .6125. The buffer region

ends at z : 8. for the coaxse grid and at z = 5.1 for the

fine grid. The first grid has about 10 grid points per

TS wave and the fine grid has 20 point per wavelength.

The frequency parameter F was equal to 20 and the

free stream temperature Too = 206K.

This case is more difficult than the incompressible sim-

ulation because of the higher Reynolds number and

many more TS wave periods have to be covered. The

initial amplitude of the disturbances A was .0001 and

Figure 5 shows a contour plot of the pressure on the fine

grid. The regular pattern of the TS waves is clearly

visible. The initial amplitude is very small and de-

cays, because the disturbance is in the stable part of

the boundary layer. More downstream the disturbance

grows very regularly, saturates and decays. The decay

is partly physical and at the end of the plate further
increased by the coaxsening of the grid to minimise re-

flections from the outflow boundary.

Figures 6 and 7 show the spatial growth rates obtained
with the finite difference and finite volumes scheme on

the fine grid and compare them with the PSE results of

Bertolotti 2. They are virtually identical till the distur-

bances reach the buffer region, where the growth rate

suddenly changes and the Tollmien-Schlichting wave

rapidly decays. The CPU time used for both schemes

was appro_rnately equal for the implicit calculations,

with the finite volume scheme 1.1 times more expensive

than the fudte difference scheme. The approximation of
the flux integral in the flulte volume method, equation

(3.12), however, is crucial to minimize computing time
for the finite volume scheme. These plots also show

that the buffer region is quite effective in minimizing
reflections from the outer wall. The simulation was

continued in all cases till the leading wave front would

have travened at least twice the length of the domain.

The sound waves, which travel faster, then would have

a chance to reflect several times through the domain,

with no apparent effect on the growth rates. The use

of a buffer region is, however, not without pitfalls. One

has to be very caxeful to create a smooth transition
with the flow domain.

The accuracy of the simulation also depends on the

time step and time integration scheme used. The time

integration method is a second order 3 point implicit

multi-step scheme. Four Newton iterations were used
to improve time accuracy of the implicit scheme. The

residue decreased two orders of magnitude dttfing the
Newton iterations and was approximately 5 x 10 -7 at

the end of the Newton iterations. Figures 8 and 9 show

the growth rate of the normal and streamwise velocity
component for simulations with different time steps us-

ing the finite volume scheme, but all on the 436 × 80

grid. The time step At is equivalent with a CFL num-
ber 80. As can be seen from these plots the accuracy

is bounded by the time integration scheme and not by

the spatial resolution. Significant improvement should

be obtained by using a higher order accurate time in-

tegration method.
The results of computations with the finite difference

scheme on the coaxse and fine grid axe presented in Fig-

ure 10. They show that the coaxse grid simulation is

underresolved, while the fine grid simulation compares
well with the PSE results of Bertolotti 2. It should be

emphasized that it is very important to perform the

computations on di_erent grid levels to test accuracy,

especially when there axe no theoretical results avail-

able. The coarse grid results do show that the flow

becomes unstable but the growth rate is not correct

and can only be checked by increasing the resolution.
Finally, the effect of the location of suction and blow-

ing was investigated. Figure 11. shows results of sim-
ulations with the finite di_erence scheme with suction

and blowing applied directly after the inflow boundary

or just before the region where the flow becomes un-

stable. It can be seen that the growth rates are not

sensitive to the location of suction and blowing.

To summarize the results discussed in this section it

can be stated that both the finite volume and finite dif-

ference schemes can be used for simulations of bound-

ary layer instability. The results for the incompressible

flow were slightly better for the finite difference scheme,
but this can be attributed to the second order viscous

contribution in the finite volume scheme. The biggest

advantage of the finite dhTerence scheme is that it is less

sensitive to grid stretching, but this scheme is not eas-

ily extended to flows with sonic points, because it will

loose accuracy at these points, which is not the case
for the finite volume scheme. It was also found that

using a higher order accurate time integration method
will be more efficient and extreme care has to be taken

to guarantee numerical accuracy, preferably by using

grids with different resolution.
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Figure 1. Streamwise velocity U at 10 equally

spaced stations, Re= = 50.000- 320.000, Moo =

.08, versus similarity parameter 7/= _V_--e, com-
pared with compressible Blasius solution (dashed

line).
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Figure 2. Normal velocity V Rye= at 10 equally

spaced stations, Re= : 50.000 - 320.000, Moo :

.08, versus similarity parameter 7/= _v/_, com-
pared with compressible Blasius solution (dashed

line).
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Figure 5. Pressure contours in fiat plate boundary layer, Moo = .5, initial amplitude suction and blowing at wall
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